Semaine 6b

Contraintes et déformations
relatives pour poutre en flexion

v. 2024

PARTIE 1: (slide 4 - 25)

Contraintes et déformations relatives pour poutre en flexion
(en partie expliqué dans Chapitre 5 de Gere et Goodno)

PARTIE 2: (slide 26 - 50)

Poutres: Moment quadratique (moment d’inertie)
(en partie expliqué dans Chapitre 12 de Gere et Goodno)
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Résumé du chapitre précédent (semaine 6a)

av
m——=—qx)

aM,

= V(x)

- M,(x): Moment de flexion

- IV (x): Force de cisaillement

* (x ) . Charg e distribuée (positif vers le bas pour relations différentielles)
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Bii—‘—» 4—( B
NB NB
Vg Vi
C’était des poutres magiques sans “épaisseur” eny



Résumé chapitre actuel (semaine 6b)

Poutre en flexion pure avec une épaisseur en y

m Déformation Relative normale ¢, (y) :
Y —Yo
&x(y) = -, T —Kk(y — ¥o)

Yo: Position de l'axe neutre

p: Rayon de courbure
K= %: Courbure

Yy — ¥o: Distance de l'axe neutre

- yo= ’axe neutre: centroide de la section

transverse pour poutres mono-matériaux:

... Neutral axis

O Contrainte normale o,(x,y):

M, (x)

(y —y9) =—E Yo

O, \X, = —
x( 3") Inyo P

I, ,,: Moment d'inertie de la section sur un axe
paralléle a l'axe z passant par 1'axe neutre y,

Ly, = [, O —y0)*dydz

m M, (x) = %1

Z,Yo0

0 Contrainte normale maximum oy, :
M, 00l 1M, ()]
I S

Z,Yo

| Ox max (x) | =

e (C:Distance maximale vers l'axe neutre

IZ
° S —_— yO

: Module d’inertie élastique
c




Semaine 6b —partie 1
Objectifs d’apprentissage

Savoir ce qu’est une Poutre en flexion pure
Pour les poutres en flexion pure:

« Exprimer &,(y)

« Deéfinir et savoir trouver 1’axe neutre

 Exprimer og,(y)



Déformation relative
dans les poutres
en flexion pure

1 2 il LB g ] 1]

ITI ) ]]
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Pas de forces axiales pour le moment



Déformation relative dans
une poutre en flexion pure

C’est quoi étre en flexion pure ?

m Moment interne M, non-nul et constant le
long de la poutre. Pas de forces internes V(x)

ou N(x)

0 C-a-d : on « tord » les 2 extrémités de la
poutre, sans tirer ou pousser

m La flexion ne crée pas d’élongation de I’axe
neutre

m Une contrainte normale o, (y) est la seule
contrainte induite par la flexion

m Le niveau de contrainte dépend de y (en
compression d’un coté, en traction de ’'autre)

Mais heureusement, les équations de ces
slides sont aussi valables pour toute poutre
sans force normale interne, mais avec un /' (x)




VOUS pouvez voir certaines contraintes internes !

https://en.wikipedia.org/wiki/Photoelasticity#/media/File:Plastic_Protractor_Polarized_05375.jpg
https://www.youtube.com/watch?v=Bv7HsJ4L.bkA



https://www.youtube.com/watch?v=Bv7HsJ4LbkA

Source des vidéos des prochains slides

The Bending of Beams (10 part video senes) was created
for CIV E 204 Mechanics of Solids 1
University of Waterloo, Waterloo, Ontano, Canada

Author G. Wayne Brodland
Animator Judy Sherwood
Narrator Colin Campbel

Fermission is granted 1o use thes wdeo for educational purposes
only, provded It 1s unallered and Includes these credils

C) 2009 GW Brodland and J Sherwood




Déformation relative dans une poutre en flexion pure

https://www.youtube.com/watch?v=9C9GFs5AK4c

Y —Yo
p

ex(y) - =

Visualisation de la
contrainte pour une
poutre de section
rectangulaire

Yo, = axe neutre
Yo = 0 dans cette vidéo



https://www.youtube.com/watch?v=9C9GFs5AK4c

£,(x,y) : Déformation relative normale pour une
poutre en flexion pure, en fonction de xet y

m Lorsqu’une poutre fléchit, nous pouvons définir
localement un rayon de courbure p et une
courbure k=1/p

m Les sections de la poutre perpendiculaires a
l'axe de la poutre avant la flexion resteront plan
apres pliage (c-a-d a x constant)

m Un coté (par ex ici le dessus) de la poutre va
s’allonger, tandis que ’autre coté devient plus
court.

m L'axe ou il n'y a pas d'allongement est appelé axe
neutre et passe a travers le centroide de la
poutre

L1 _as
p  dx




Axe Neutre (poutre simple) et T_y_,
déformation relative selon y '

m Aprés déformation, 1'axe neutre conserve sa
longueur d'origine.

m tout autre ligne paralléle a I’axe neutre s’allonge ou se

raccourcit.

ds, = p df (longueur de ’axe neutre y,)

ds = (p — (¥ — y0)) d6. longueur d’un axe paralléle a y,

Ex

ds — dsg
= —
dSO

,l‘ S
4 SS
’ ~

Y — Yo

ex(x,y) - = 0

m Y, est la position de I’axe neutre (centroide)

poutre flexion pure: pas de dépendence en x de ¢,

Axe Neutre



Déformation relative ¢, (x,y) normale (= selon axe x) dans
une poutre en flexion, pour section non rectangulaire

Y — Yo
p

Ex(y) = —

Centroid Visualisation de €x pour
poutre avec sectionen T

[’axe neutre est toujours
au centroide, et donc
pas nécessairement au
milieu (en y) de la
poutre.

https://www.youtube.com/watch?v=Tfilybn6be0



https://www.youtube.com/watch?v=Tfi1ybn6be0

Ou est le Centroide de la poutre?
Analyse de la section dans plan yz

ty ,
z , intégrales dans le plan yz. dA = dy dz

Section d’une poutre

Nous n’allons calculer que y dans ce cours
car nos poutres ne bougent que dans la

Centroide = centre de masse direction y



Contraintes normales o0, (y) dans une poutre en flexion

https://www.youtube.com/watch?v=123bk08PWpl

Loi de Hooke dans
la poutre

Permet de lier
Ex(y) avec agx(y)


https://www.youtube.com/watch?v=i23bk08PWpI

Contraintes normales o,(y)

Y—Yo
P

lgx(y) - =

Y—Yo
P

m la loi de Hooke: O'x(y) — EEx(y) = —F

O Rappelez-vous des matrices de souplesse et de rigidité
Olcisimple car 6y =0, =0

Pour trouver c et ¢, il faut connaitre la position de 1’axe neutre y,



Contraintes normales dans une poutre

m Pour une poutre en flexion pure :la contrainte normale est la seule
contrainte induite par la flexion:

flexion pure o, 0 0
=20 5=<O 0 O)

0 0 O

M = constante

m Nous avons des déformations relatives en x, et donc aussien y et z !!

Ux(x» y)

gx(er) — E

gy(xry) = EZ(X,y) = —vex(x,y)




Comment trouver l'axe neutre?

’axeouo x:O (ici sans force axiale) O
M
Prendre une section dans le plan yz, puis utiliser équations de la ) \ X
statique, sachant que la force axiale est 0 en flexion pure. /
ZFx:N:O plan xy
(y—y0) _ y
N=/[ ox(x,y)dA = [f —ETOdydz =0
A dA
Cq A
Jydydz 4 y
= — centroide y
Et donc Yo fdy dz ¢ Cz/ 0 \
Les intégrales sont dans le plan yz - plan vz

o, (x,y)
Ceci n’est pas un diagramme des forces < ) (%) [ Plan Xy



2\

[ydA
C " Yo = a4
O © v L’ Les intégrales sont dans le plan yz
< ; N 3/
;é =L
(b= (V7 (g s L
A o ‘1L°° Notez que vous choisissez

y 3oL I’origine du systeme de
- B - Az =/ tl coordonnées.

ydh= (7 (T ydpdy =L

A

On pourrait choisir origine a

9,=Lt% & Cadépendde t/2 pour avoir yo = 0
-5 votre choix de
I'origine

19



Axe neutre, sans force axiale: axe continue?

v

Que se passe-t-il si la section de la poutre change, et n’est pas symétrique

v



Quel Dessin est juste pour I'laxe neutre ?

A |~
B - 1~
D

aaaaa



Lien entre contrainte g,(x,y) et moment de flexion M ,(x)

Poutre sur laquelle on impose moment M, a chaque extrémité

1. Pour trouver M,(x) : “couper” la poutre (a x donné, selon axe y), puis utiliser équations
de la statique pour trouver M,(x), le moment interne

DMy = My(x) = My = 0 My(x) = My

2. Puis: exprimer M,(x) en fonction de o,(x, y). Mais comment? =N

GO _7 -

plan xy
e P&W

’ on Yoiim N(x) =0

V(x) =0

plan xy
o




Lien entre contrainte o,(x,y) et moment de flexion M,(x)

https://www.youtube.com/watch?v=asBW0OjcO0b¥Y



https://www.youtube.com/watch?v=asBW0Ojc0bY

Lien entre contrainte o,.(x,y) et M, (x):
le moment d’inertie et la courbure (sans force axiale)

m Nous pouvons calculer le moment créé par les contraintes normales par rapport a

l'axe neutre. Rappel: 0,.(x,y) = —E Y ;y 0
s Sk (y)
m Statique: donc ), M = 0 sur chaque plan yz. Moments dA = M,(x
plan yz x>
¢

n M, (x0) =—[o (e, )y —yo)dAd= [ yzg(y — ¥o)* dydz

force bras de levier

m ainsi

3

E
p

M,(x) =— Iz,yo avec Iz,yo — f (y — 3’0)2 dydz Ne dépend pas de masse

Ne dépend pas de E

M) _E ox (%, ) = =
lzye P

M, (x)
I

Z,Yo

(y — yo) Formule Flexion

[ Sil'origine y a été choisi sur 'axe neutre, alors y, = 0



Semaine 6b — partie 2
Objectifs d’apprentissage de cette partie

* Lier contrainte et Moment de flexion par le M., (%)
moment d’inertie o,(x,y) = ———=(y — o)
IZJ/O
 Trouver la contrainte maximale dans une
poutre en flexion
¢ Calculer le moment d’inertie pour poutre Izy, = j (y = ¥0)* dA
de section assemblée de formes simples

 Trouver I’axe neutre pour poutre de section
assemblée de formes simples



Moment quadratique (moment d’inertie)

axe,pOSlthTlsur ! axe

Exprime la rigidité d’'une géomeétrie a la flexion y

« Dépend de la géométrie de la section de la poutre

* Ne dépend pas du matériau
y

T // 4070‘ 30 mm

200 mm z

/ 0
v 1 30 mm

|

——300 mm
30 mm 30 mm

Poutre: Axe long sur x, charge et déflection sur y, flexion autour de 'axe z



Moment quadratique (moment d’inertie)

| axe,position—axe

IZ,y:O — jyz dA Iy)z:() - sz dA

axe selon lequel on “enroule” ou « plie » la poutre.
ici, ce sera I'axe z, car moment de flexion sur I'axe z, et déflection
sur 'axe y.

* Dépend de la géométrie de la section de la poutre
* Ne dépend pas du matériau

b

° 11 . 1IN 1Y .
Nous aller “plier” a I’axe neutre: [, ,,—,,



Contrainte MAXIMUM: toujours en haut ou en bas de la poutre

https://www.youtube.com/watch?v=VDiNTuVKPSM



https://www.youtube.com/watch?v=VDiNTuVKPSM

Contrainte max dans un poutre en flexion pure

m Contrainte maximum:

M,(x) M, (x)|
O-x(x;y) =—— (y — }’0) - |Jx,max(x)| = |M,(x)| =—
Iz,yo IZ:)’O S

m c est la distance maximale entre l'axe neutre et bord

de la poutre

y

m S est le module d’inertie élastique: donne l'efficacité

d'une section transversale pour résister a la flexion IC
m S= elastic section modulus (in English) | z

mS =1/c |

m grand S — petite contrainte générée pour un
moment de flexion donné



https://en.wikipedia.org/wiki/Section_modulus

Section modulus equations!®!

Cross-sectional shape Figure Equation
A
th bh?
Rectangle : - ==
< ------- IL--P----> 6
v
B s BH? bh3
x Sm— — —
< > " 6 6H
' Iz
doubly symmetric I-section (major axis) hA <b/% <b/g H Sz = Ty
i i H
\ NA ; withy = —
I i | 2
<B>
A
Alergl (b2 ¢  BH-W (B-b)’h
doubly symmetric I-section (minor axis i : J= =
y sy ( ) hi EH 6 —
v '
I nr* _md*
Z 4 64
Circl d
ircle > ==
2
S = nd®

Comment

Solid arrow represents neutral axis

NA indicates neutral axis

[4] | NA indicates neutral axis

Solid arrow represents neutral axis



Comment trouver le centroide et le moment d'inertie
d'une section de poutre?

) =~ » . 1

Z,Y0 1 < ;: Ymax
Centroide I
Ymax 7'y
o _davdA [, ydydz [ yz(y)dy Q . E .
0= = = 0 min
A Ymax | 0 I
J, dydz fJ’min z(y)dy Z

. . section de la poutre
Moment d’inertie autour de ’axe z passant par y,

Ymax
L, = j (y — yg)? dA = j (v — yo)22(y)dy
A

Ymin

I,,, dépend de y,

Les intégrales sont dans le plan yz. Attention a I’origine que vous choisissez.




ax

[, ydA [, ydydz [, yz(y)dy
Yo = = =
A Ymax
[, dydz [, """ z(y)dy

Attention aux bornes pour les intégrales dans le plan yz

m Si section rectangulaire: facile

m Si autre, pratique de passez par z(y)

h/3

dl
|

v



Moment d’inertie (quadratique)
rappel

y b/2 hb3
i LdA dy I = / X2dA = / X’hdx = ——

l x=0 —b2 12
ﬁ A
v
il | ‘
hil2
bh3
B B _ 2 14 — 2 _
1_9_, ]_) I-\',y:o /y dA /_sz bdy 12
2 1

On « plie » selon un axe donné (exemple ci-dessus selon x ou y. Pour nos poutres
avec ’axe long en x et la charge selon y, nous chercherons toujours I,

Le choix de I’axe origine est important! Origine = axe ou on plie/tourne. Ici les
axes passent par ce le centre de l'objet. [, ,—o # [} x=p /2

* Siaxe pas selon centre, utiliser Steiner = théoréme des axes paralléles)




Steiner, si on déplace 'axe

£
N

I, =1, + Ad?
where

A is the area of the shape, and
d is the perpendicular distance between the x and z’ axes.

By IngenieroLoco - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=48221149



Roark’s formulas for stress & strain,
W.C. Young, 8th ed, McGraw Hill

Bending moment of inertia

TABLE A.1 Properties of sections

NOTATION: A = area (length)?; y = distance to extreme fiber (length); I = moment of inertia (length*); r = radius of gyration (length); Z = plastic section modulus (length®); SF = shape factor. See (o]
Sec. 8.15 for applications of Z and SF S
Plastic section moduli,
Area and distances from Moments and products of inertia shape factors, and locations '°l1
Form of section centroid to extremities and radii of gyration about central axes of plastic neutral axes g
2 /1 4 3 1=
1. Square A=a L=I=1I=qa Z, =Z,=0.25a S
(7
v ¥, =%, _a ry=r,=r,=0.2887a SF, =SF, =15 3
2
—f - =
} vl |y Yo =0.707acos(% - 2) @
a 4 L —T x 4 =
L ' \} g
_l_ | N (7]
[ o
o
2. Rectangle A=bd I =3Lbd? Z, = 0.25bd> ]
=
3 2 Q
v 5, :g I, =%db Z, = 0.25db 5
el . L>I, ifd>b SF, = SF, = 1.5
! =g re = 0.2887d
T T X —
| ry = 0.2887b
J .
b
3. Hollow rectangle A=bd-bd; bd? — b;d? bd? — b;d?
L =—F % Z, = i
d 12 4
Ye =g db® —d;b? Zd
Yy 2 %% SF, = 2%
RAUIN r b I, = 12 ¥l
- Ye=3 AN 5 _ db?—dib?
‘ f == \a x 1
' Z,b
di (L 2 SF, =227
d + T X v=\2a 21,
Ye
b, 3
~—— P o

35



Centroide
Pas nécessairement dans 1’objet

avec symétrie

Area with one axis of symmetry

y

§

Area with two axes of symmetry
y
E

Area that is symmetric about a
point

]
P X

forme complexe
y




Comment trouver le centroide et le moment d'inertie d'une
section de poutre plus complexe

section d’une poutre, union de différentes formes

S




Assembler les morceaux pour trouver le centroide et
moment d’inertie I d’un objet complexe

* Centroide d’un assemblage

N
yo = 2= Vil Ay
0 — N
L:lAl 7 Yo
o— | @ -5
* Moment d’inertie (autour de 1’axe neutre) Y3

N N
Iz,yo = 2 Iz,yi + z Ai(yi — yO)Z
=1 =1

* on commence par analyser chaque sous-élément. A, = aire de I’élément i

» y;estle centroide de I’élément i, par rapport a I’origine (pas par rapport a I’élément)

* I, estle moment d’inertie de I’élément J, pour « plier » par ’axe qui passe par le
centroide de 'objet i. (c’est le I « intuitif » pour chaque élément)

* On peut soustraire les « trous »




* Centroide d’un assemblage

/ AY
e ,
yO—seul4f/ - 4 o—— | @ Q-4
Y3
V4
dy
Z
<
N
_ di=1Yifi
Ya = dyg + Yo-seuls Yo IivzlAi



Exemple 0: Trouver S pour une poutre avec cette section

Rappel
S=1/c

c est la distance maximale a l'axe
neutre

Il nous faut donc trouver: I et c (et
donc yo) Origine



Exemple 0

Solution. On décompose la forme complexe en 2 formes simples

Yo = Iiv=13’iAi
0=
§V=1Ai




Exemple 0

Solution: calcul des centroides de chaque élément et de y,

* Surfaces  Agp,. = bh Surface du rectangle
Aciy = TIT? Surface du cercle
A
Yeir = d
Ator = Apec — Acir = bh — mr?
. = m N centrolde y’l"eC = h/z
Yéiément [dA
» Centroides h M
== i Z rigine
(3 partir de y = 0) YRec > Centroide du rectangle orig
Yeir = d Centroide du cercle (pasr/2!)
N 2
i=1Yidi (Q) o bhZ
Yo = N A _ YRec ARec = Ycir ACir _\2 bh — dmr Yo = 2 ndr
=177 Yo Aot bh — mtr? 0 bh — mr?




Exemple 0

Solution: calcul du moment d’inertie complet

Moments d’inertie
1

[ = 1t Moment d’inertie du cercle par
Cr = 4 I’axe passant par son centroide y,;,

1
Ipec = Eth Moment d’inertie du rectangle par /
I’axe passant par son centroide y,..
N N z
_ 2
Ly = ) Loy + ) A = y0)

i=1 i=1
I =] — I~ + A ( —_ )Z_A( S )2 Yo = 2
Yo Rec Cir Rec\YRrRec — Yo cir\Ycir — Yo bh — nir

(puis algebre)



Exemple 0

Finalement: calculde cetde S

e Distance maximale de l'axe neutre

¢c=h-yo

* et enfin, le module de section élastique

— IYo _ IJ’o

¢ h =y,

S




Exemple 1

Deux poutres de section différentes sous une charge uniforme (propre poids)

Poutre encastrée. 2 poutres qui ont la méme masse par longueur, mais pas la méme section

Trouvez celle qui a le « S » le plus grand (c-a-d les contraintes les plus faibles)

N RRRRRRRRRRRRRRRRRnnnn!

\ om0 =
N
2a = 2 mm
b =3 mm

les 2 poutre ont la méme section (6 mm?)



Exemple 1

Poutre avec force distribuée uniforme.

m Etape 1 - Nous calculons le moment de flexion M ,(x), puis sa valeur maximale.
Poutre de section A, densité p

q(x) = pAg
V(x) = pAg(L — x)

_ 2
M@ = —pag L2

LZ
|M|Max = |M(x = O)l = ,0A97

\“‘HHHHHHHHHHH AS2222222222222222222
\ My

\ R,

)

7



Exemple 1

Poutre avec force distribuée uniforme.

m Etape 2 — trouver a) la position y,de I’axe neutre, et b) la distance max ¢ entre
I’axe neutre et le bord de la poutre.

[ydA
Yo = fdA
A = 2ab A= 2ab
(voir prochain b d p [Pt b
slide pour yozafoy Y+ fb ydy=3b+a )’ozi
'intégrale) 2ab 4
3b+a
C=Yy= 2 = 2.5mm C=y0=5=15mm




Az al val=2a A
A Coudd w
Jyd §@7 "o

& /.
< a S; ?”&} “l‘fr& }dg/



v

A;(y; — yo)*
1

N
Exemple 1 Ly, = 2 Ly, +
i=1 i

Poutre sous charge uniforme

m Etape 3vl - Nous calculons le moment d'inertie, selon z, de I’assemblage,
utilisant Steiner

Iz,yo = Igreen,yo + Iblue,yo
2 2
R A = Igreen,yg,o + Agreen : (YO - Yg,o) + Iblue,yb,o + Aprue (yO - Yb,o)
Yo Y S Yb,0 _ab®  ba® ) b+a\l ) b+a\
Iyg,o ey =tz tab(—z—) T3
SR S h AR - Y-
>
3 3 2 2
b+ g L _ab +ba +ab(b +2ab+a)=
Yo=—4 Yo 12 12 8
b _ 5ab®+5ba’ + 6a*b* _ 4
=5 Iy, = 52 = 8.5 mm
—bh+2
Ybo = ]



Exemple 1

Poutre sous charge uniforme

m Etape 3v2 - Nous calculons le moment d'inertie (METHODE alternative, par_intégrale

directement plutdét que par Steiner)
Loy, = f(y —yo)?dA = j(y — ¥o)* dzdy

b b+a
yI b=3mm Iz y, = Igreeny, t Ipiuey, = aj (v —yo)dy + bj (v —yo)*dy
0 b

b ( )3 b+a
+p Y —=Yo

"""" . (v — v0)®
_ 4 :

N 3

0

, _a<b 3b+a)3+(3b+a>3 +b <b+ 3b+a)3 (b 3b+a>3
2Y0 =73 4 4 3 Ty 4

[0.53 +2.53 +1.53-3 —3-0.53] mm* = 8.5 mm*

W] =



Exemple 1

| Ly, = | 0= y0)? da
Poutre sous charge uniforme

m Etape 3 - Nous comparons les moments d'inertie, selon z

A
Yo yI lb=3mm

<+—>
a=1mm
2

Iz,yo =f(y—5) dA =

b 2

= ZaJ (yz—by+—>dy=
4 ° !
I,, =8.5 mm ab’

2o = = 4.5 mm*

remarquez que Ibarre_en_t est presque 2x Ibarre_rectangulaire



Exemple 1 Iy,

|M, ()|
S = T |Ux,max(x)| = —

Poutre sous charge uniforme S

m Etape 4 - Nous calculons le module de section élastique S

2a = 2 mm
+—>

b =3 mm

Il y aura donc des contraintes maximum trés semblables pour les deux cas

pour un méme moment imposé, malgre le fait que la barre “en T” soit 2x
plus rigide.
Mais la barre en T aura une déflexion environ 2x plus faible




Exemple 2

m Une poutre de section rectangulaire, de longueur L, largeur b et
épaisseur 2f (x) est chargée comme indiqué par une Force F,,.

m Trouvez f(x) pour avoir la méme contrainte maximum tout le long
de la poutre bleue.
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Solution 2

m Moment de flexion: M(x) = —Fy(d + L — x)

|M,(x)|

m Contrainte Maximum : |0y a0, ()| = p
ZYo

m Moment d’inertie: I,,, (x) = % [2f(x)]3h

m Distance maximale de l'axe neutre: c = f(x)

|M,(x)|

m Contrainte Maximum : |0y max (X)| = p
ZYo
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