
Semaine 6b
Contraintes et déformations 
relatives pour poutre en flexion
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PARTIE 1:  (slide 4 - 25)
Contraintes et déformations relatives pour poutre en flexion

(en partie expliqué dans Chapitre 5 de Gere et Goodno)

PARTIE 2:  (slide 26 - 50)
Poutres: Moment quadratique (moment d’inertie)

(en partie expliqué dans Chapitre 12 de Gere et Goodno)
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Résumé du chapitre précédent (semaine 6a)

n
!"
!#
= −𝑞(𝑥)

n
!$!
!#

= 𝑉 𝑥

• 𝑀% 𝑥 : Moment de flexion

• 𝑉 𝑥 : Force de cisaillement

• 𝑞(𝑥): Charge distribuée (positif vers le bas pour relations différentielles)
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C’était des poutres magiques sans “épaisseur” en y



Résumé chapitre actuel (semaine 6b)
4

q Contrainte normale 𝜎! 𝑥, 𝑦 :

𝜎! 𝑥, 𝑦 = −"! !
#!,#$

𝑦 − 𝑦$ = −𝐸 "#"!
$

• 𝐼%,&!: Moment d'inertie de la section sur un axe 
parallèle à l'axe z passant par l'axe neutre 𝑦'

• 𝐼",$! = ∫% 𝑦 − 𝑦& ' 𝑑𝑦𝑑𝑧

n 𝑀# 𝑥 = $
%
𝐼#,'%

q Contrainte normale maximum 𝜎!,'(! :

𝜎!,'(! 𝑥 =
𝑀) 𝑥
𝐼),*$

𝑐 =
𝑀) 𝑥
𝑆

• 𝑐: Distance maximale vers l'axe neutre

• 𝑆 =
(+,,%
)

: Module d’inertie élastique

n Déformation Relative normale 𝜀% 𝑦 : 

𝜀* 𝑦 = −
𝑦 − 𝑦+
𝜌

= −𝜅 𝑦 − 𝑦+

• 𝑦&: Position de l'axe neutre

• 𝜌: Rayon de courbure

• 𝜅 = (
)
: Courbure

• 𝑦 − 𝑦&: Distance de l'axe neutre

• 𝑦&= l’axe neutre: centroïde de la section 
transverse pour poutres mono-matériaux: 

𝑦& =
∫- ' -'-#

.

Poutre en flexion pure avec une épaisseur en y



Semaine 6b –partie 1
Objectifs d’apprentissage
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Savoir ce qu’est une Poutre en flexion pure

Pour les poutres en flexion pure:

• Exprimer 𝜀# 𝑦

• Définir et savoir trouver l’axe neutre

• Exprimer 𝜎#(𝑦)



Déformation relative
dans les poutres 
en flexion pure

6

Pas de forces axiales pour le moment



Déformation relative dans 
une poutre en flexion pure

C’est quoi être en flexion pure ?

n Moment interne 𝑀' non-nul et constant le 
long de la poutre. Pas de forces internes 𝑉(𝑥)
ou 𝑁(𝑥)
¨ C-à-d : on « tord » les 2 extrémités de la 

poutre, sans tirer ou pousser

n La flexion ne crée pas d’élongation de l’axe 
neutre

n Une contrainte normale 𝜎% 𝑦 est la seule 
contrainte induite par la flexion

n Le niveau de contrainte dépend de y (en 
compression d’un coté, en traction de l’autre)

7

Mais heureusement, les équations de ces 
slides sont aussi valables pour toute poutre 
sans force normale interne, mais avec un 𝑉(𝑥)



https://www.youtube.com/watch?v=Bv7HsJ4LbkA
https://en.wikipedia.org/wiki/Photoelasticity#/media/File:Plastic_Protractor_Polarized_05375.jpg

vous pouvez voir certaines contraintes internes !

https://www.youtube.com/watch?v=Bv7HsJ4LbkA
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Source des vidéos des prochains slides



Déformation relative dans une poutre en flexion pure 10

https://www.youtube.com/watch?v=9C9GFs5AK4c

𝜺𝒙 𝒚 = −
𝒚 − 𝒚𝟎
𝝆

Visualisation de la 
contrainte pour une 
poutre de section 
rectangulaire

𝑦0 = axe neutre
𝑦0	 = 	0	dans cette vidéo

plan xy

https://www.youtube.com/watch?v=9C9GFs5AK4c


n Lorsqu’une poutre fléchit, nous pouvons définir 
localement un rayon de courbure r et une 
courbure k=1/r

n Les sections de la poutre perpendiculaires à 
l'axe de la poutre avant la flexion resteront plan
après pliage (c-à-d à x constant)

n Un coté (par ex ici le dessus) de la poutre va 
s’allonger,  tandis que l’autre coté devient plus 
court.

n L'axe où il n'y a pas d'allongement est appelé axe 
neutre et passe à travers le centroïde de la 
poutre

11

𝜺𝒙(x,y) : Déformation relative normale pour une 
poutre en flexion pure, en fonction de x et y

x

y



Axe Neutre (poutre simple) et 
déformation relative selon y

n Après déformation, l'axe neutre conserve sa 
longueur d'origine.

n tout autre ligne parallèle à l’axe neutre s’allonge ou se 
raccourcit.

𝑑𝑠+ = 𝜌 𝑑𝜃 (longueur de l’axe neutre y0)

𝑑𝑠 = 𝜌 − 𝑦 − 𝑦+ 𝑑𝜃.		longueur d’un axe parallèle à y0

𝜀) =
𝑑𝑠 − 𝑑𝑠*
𝑑𝑠*

→ 𝜀)(𝑥, 𝑦) = −
𝑦 − 𝑦*
𝜌

n 𝑦+ est la position de l’axe neutre (centroïde)

12
𝑦

𝑥

poutre flexion pure: pas de dépendence en 𝑥 de 𝜀𝑥

𝑦
𝑥

𝑑𝜃

Axe Neutre𝜌

𝑦$𝑦
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https://www.youtube.com/watch?v=Tfi1ybn6be0

𝜀#(𝑦) = −
𝑦 − 𝑦5
𝜌

Visualisation de 𝜀# pour 
poutre avec section en T

L’axe neutre est toujours 
au centroïde, et donc 
pas nécessairement au 
milieu (en y) de la 
poutre.

Déformation relative 𝜀/ (𝑥, 𝑦) normale (= selon axe x) dans 
une poutre en flexion, pour section non rectangulaire

https://www.youtube.com/watch?v=Tfi1ybn6be0


Où est le Centroïde de la poutre? 
Analyse de la section dans plan yz

14

N/m2 ou Pa

z

z

z

z

z

Nous n’allons calculer que 0𝑦 dans ce cours 
car nos poutres ne bougent que dans la 
direction y

intégrales dans le plan yz. 𝑑𝐴 = 𝑑𝑦 𝑑𝑧

Centroïde = centre de masse

Section d’une poutre

𝑦
𝑧



Contraintes normales 𝜎!(𝑦) dans une poutre en flexion 15

https://www.youtube.com/watch?v=i23bk08PWpI

Loi de Hooke dans 
la poutre

Permet de lier 
𝜀#(𝑦)  avec  𝜎#(𝑦) 

https://www.youtube.com/watch?v=i23bk08PWpI


Contraintes normales 𝜎!(𝑦)

n𝜀!(𝑦) = − '(''
)

n la loi de Hooke:          𝜎-(𝑦) = 𝐸𝜀-(𝑦) = −𝐸 ./.!
0

¨ Rappelez-vous des matrices de souplesse et de rigidité

¨ Ici simple car  𝝈𝒚 = 𝝈𝒛 = 𝟎

Pour trouver s et e, il faut connaitre la position de l’axe neutre y0

16



Contraintes normales dans une poutre

n Pour une poutre en flexion pure : la contrainte normale est la seule 
contrainte induite par la flexion:

n Nous avons des déformations relatives en x, et donc aussi en y et z !!

17

𝜀# 𝑥, 𝑦 =
𝜎# 𝑥, 𝑦

𝐸

𝜀7 𝑥, 𝑦 = 𝜀% 𝑥, 𝑦 = −𝜈𝜀# 𝑥, 𝑦

0𝜎 =
𝜎# 0 0
0 0 0
0 0 0

flexion pure
𝑽 = 𝟎

𝑴 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆



Comment trouver l'axe neutre?
L’axe où 𝜎!=0
Prendre une section dans le plan yz, puis utiliser équations de la 
statique, sachant que la force axiale est 0 en flexion pure.

18

+𝐹% = 𝑁 = 0

𝑦5 =
∫ 𝑦 𝑑𝑦𝑑𝑧
∫ 𝑑𝑦 𝑑𝑧

𝑀$𝜎! 𝑥, 𝑦𝑀$

𝑁 = ∫A 𝜎# 𝑥, 𝑦 𝑑𝐴 = ∬−𝐸 7B7)
C

𝒅𝒚𝒅𝒛  =0

(ici sans force axiale)

plan yz

plan xy

plan xy

Les intégrales sont dans le plan yz

Et donc → 𝒄𝒆𝒏𝒕𝒓𝒐ï𝒅𝒆

Ceci n’est pas un diagramme des forces



Exemple: calcul de l’axe neutre pour poutre de section rectangulaire
19

Notez que vous choisissez 
l’origine du système de 
coordonnées.

On pourrait choisir origine à 
𝑡/2 pour avoir 𝑦5 = 0

𝑦5 =
∫ 𝑦 𝑑𝐴
∫ 𝑑𝐴

Les intégrales sont dans le plan yz



Axe neutre, sans force axiale: axe continue?
20

Que se passe-t-il si la section de la poutre change, et n’est pas symétrique

𝑦
𝑥

𝑦
𝑥



Quel Dessin est juste pour l’axe neutre ?

A. A

B. B
C. C

D. D

E. autre

A

B

C

D
𝑦

𝑥



1. Pour trouver 𝑀𝑧(𝑥) : “couper” la poutre (à x donné, selon axe y), puis utiliser équations 
de la statique pour trouver 𝑀𝑧(𝑥), le moment interne

22

F𝑀% = 𝑀% 𝑥 − 𝑀5 = 0 → 𝑀% 𝑥 = 𝑀5

2. Puis: exprimer 𝑀𝑧(𝑥) en fonction de 𝜎𝑥(𝑥, 𝑦).Mais comment?

Poutre sur laquelle on impose moment M0 à chaque extrémité

Lien entre contrainte 𝜎𝑥(𝑥, 𝑦) et moment de flexion 𝑀𝑧(𝑥)

𝑀$𝜎! 𝑥, 𝑦𝑀$

plan xy
plan xy

𝑁(𝑥) = 0
𝑉(𝑥) 	= 0
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https://www.youtube.com/watch?v=asBW0Ojc0bY

Lien entre contrainte 𝜎𝑥(𝑥, 𝑦) et moment de flexion 𝑀𝑧(𝑥)

https://www.youtube.com/watch?v=asBW0Ojc0bY


Lien entre contrainte 𝜎𝑥(𝑥, 𝑦) et 𝑀𝑧(𝑥): 
le moment d’inertie et la courbure 

n Nous pouvons calculer le moment créé par les contraintes normales par rapport à 

l'axe neutre. Rappel: 𝜎%(𝑥, 𝑦) = −𝐸 "#"!
$

n Statique: donc ∑𝑀 = 0 sur chaque plan yz.   ∫*+,- $"𝑀𝑜𝑚𝑒𝑛𝑡𝑠 𝑑𝐴 =𝑀' 𝑥

n 𝑀# 𝑥 = −∫𝜎* 𝑥, 𝑦 𝑦 − 𝑦+ 𝑑𝐴 = ∫1234 '#
$
%
𝑦 − 𝑦+ 5 𝑑𝑦𝑑𝑧

n ainsi

𝑀# 𝑥 = $
%
𝐼#,'% 𝑎vec 𝐼#,'% = ∫ 𝑦 − 𝑦+ 5 𝑑𝑦𝑑𝑧

𝑀' 𝑥
𝐼',"!

=
𝐸
𝜌

¨ Si l'origine y a été choisi sur l'axe neutre, alors 𝑦& = 0

24

Formule Flexion𝜎# 𝑥, 𝑦 = −
𝑀% 𝑥
𝐼%,7)

𝑦 − 𝑦5

(sans force axiale)

bras de levierforce

Ne dépend pas de masse
Ne dépend pas de E



Semaine 6b – partie 2
Objectifs d’apprentissage de cette partie

25

• Lier contrainte et Moment de flexion par le 
moment d’inertie

• Trouver la contrainte maximale dans une 
poutre en flexion

• Calculer le moment d’inertie pour poutre 
de section assemblée de formes simples

• Trouver l’axe neutre pour poutre de section 
assemblée de formes simples

𝜎# 𝑥, 𝑦 = −
𝑀% 𝑥
𝐼%,7)

𝑦 − 𝑦5

𝐼%,7) = I 𝑦 − 𝑦5 D 𝑑𝐴



Moment quadratique (moment d’inertie) 
𝐼!"#,%&'()(&*?@A BCDEF

26

• Exprime la rigidité d’une géométrie à la flexion

• Dépend de la géométrie de la section de la poutre

• Ne dépend pas du matériau

z

Poutre: Axe long sur x, charge et déflection sur y, flexion autour de l’axe z

z

y



Moment quadratique (moment d’inertie) 
𝐼!"#,%&'()(&*+!"#

27

axe selon lequel on “enroule” ou « plie » la poutre.
ici, ce sera l’axe z, car moment de flexion sur l’axe z, et déflection 
sur l’axe y.

• Dépend de la géométrie de la section de la poutre
• Ne dépend pas du matériau

• Nous aller “plier” à l’axe neutre: 𝐼%,7E7)

𝐼%,7E5 = I𝑦D 𝑑𝐴

z

z 𝐼7,%E5 = I 𝑧D 𝑑𝐴

𝑦
𝑥



Contrainte MAXIMUM: toujours en haut ou en bas de la poutre 
28

https://www.youtube.com/watch?v=VDiNTuVKPSM

https://www.youtube.com/watch?v=VDiNTuVKPSM


Contrainte max dans un poutre en flexion pure

n Contrainte maximum:

n 𝑐 est la distance maximale entre l'axe neutre et bord 
de la poutre

n 𝑆 est le module d’inertie élastique: donne l'efficacité 
d'une section transversale pour résister à la flexion

n 𝑆= elastic section modulus (in English)

n 𝑆 = 𝐼 / 𝑐

n grand 𝑆→ petite contrainte générée pour un 
moment de flexion donné

29

𝜎% 𝑥, 𝑦 = −
𝑀' 𝑥
𝐼',"!

𝑦 − 𝑦& → 𝜎%,+,% 𝑥 = 𝑀' 𝑥
𝑐
𝐼',"!

=
𝑀' 𝑥
𝑆

z

c



30
https://en.wikipedia.org/wiki/Section_modulus

I. =
/0"

1
=/2

"

31

𝑐 =
𝑑
2

S = /2#

4'



Comment trouver le centroïde et le moment d'inertie 
d'une section de poutre?

31

𝜎%(𝑥, 𝑦) = −
𝑀' 𝑥
𝐼',"!

𝑦 − 𝑦&

𝑧

𝑦

𝑦&

section de la poutre

𝑦

𝑑𝑦

𝑦+,%

𝑦+-.𝑦+ =
∫. 𝑦𝑑𝐴
𝐴

=
∫. 𝑦 𝑑𝑦𝑑𝑧

∫. 𝑑𝑦𝑑𝑧
=
∫'012

'034 𝑦𝑧 𝑦 𝑑𝑦

∫'012

'034 𝑧 𝑦 𝑑𝑦

Centroïde 

𝐼#,'% = G
.

𝑦 − 𝑦+ 5 𝑑𝐴 = G
'012

'034
𝑦 − 𝑦+ 5𝑧 𝑦 𝑑𝑦

Moment d’inertie autour de l’axe z passant par y0

𝑧 𝑦

Les intégrales sont dans le plan yz. Attention à l’origine que vous choisissez.

𝐼",$!  dépend de 𝑦0



Attention aux bornes pour les intégrales dans le plan yz

n Si section rectangulaire: facile

n Si autre, pratique de passez par 𝑧(𝑦)

32

𝑦+ =
∫. 𝑦𝑑𝐴
𝐴

=
∫. 𝑦 𝑑𝑦𝑑𝑧

∫. 𝑑𝑦𝑑𝑧
=
∫'012

'034 𝑦𝑧 𝑦 𝑑𝑦

∫'012

'034 𝑧 𝑦 𝑑𝑦

𝑦
𝑧

ℎ/3

𝑏



Moment d’inertie (quadratique)
33

rappel

• On « plie » selon un axe donné (exemple ci-dessus selon x ou y. Pour nos poutres 
avec l’axe long en x et la charge selon y, nous chercherons toujours 𝐼)

• Le choix de l’axe origine est important! Origine = axe ou on plie/tourne. Ici les 
axes passent par ce le centre de l’objet. 𝐼*,!5$ ≠ 𝐼*,!56/8

• Si axe pas selon centre, utiliser Steiner = théorème des axes parallèles)

, 𝑥 = 0

, 𝑦 = 0



Steiner, si on déplace l’axe
34

By IngenieroLoco - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=48221149



Bending moment of inertia

35

Roark’s formulas for stress & strain, 
W.C. Young, 8th ed, McGraw Hill



Centroïde
36

Pas nécessairement dans l’objet

avec symétrie forme complexe



Comment trouver le centroïde et le moment d'inertie d'une 
section de poutre plus complexe

37

section d’une poutre, union de différentes formes

𝑧

𝑦

𝑧

𝑦



Assembler les morceaux pour trouver le centroïde et 
moment d’inertie I d’un objet complexe

38

𝑦5 =
∑GEH
I 𝑦G𝐴G
∑GEH
I 𝐴G

• Centroïde d’un assemblage

𝐼%,7) =F
GEH

I

𝐼%,7/ +F
GEH

I

𝐴G 𝑦G − 𝑦5 D

• Moment d’inertie (autour de l’axe neutre)

𝑧

𝑦

1

2

3
4

𝑦0

y1, y2 𝑦3

• on commence par analyser chaque sous-élément.    Ai = aire de l’élément i
• yi est le centroïde de l’élément i, par rapport à l’origine (pas par rapport à l’élément)
• Iz,yi est le moment d’inertie de l’élément i, pour « plier » par l’axe qui passe par le 

centroïde de l’objet i.  (c’est le I « intuitif » pour chaque élément)
• On peut soustraire les « trous »

𝑦&
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𝑦5 =
∑GEH
I 𝑦G𝐴G
∑GEH
I 𝐴G

• Centroïde d’un assemblage

𝑧

𝑦

1

2

3
4

𝑦0

y1, y2 𝑦3
𝑦4

𝑧

𝑦+67892:

d4

𝑦J = 𝑑J + 𝑦5BKLMNJ



Exemple 0:   Trouver S pour une poutre avec cette section
40

𝑧

𝑦𝑏

ℎ

𝑟

𝑑

Rappel
𝑆 = 𝐼 / 𝑐

𝑐 est la distance maximale à l'axe 
neutre

Il nous faut donc trouver:  𝐼 et 𝑐 (et 
donc 𝑦5) Origine



Exemple 0
41

Solution. On décompose la forme complexe en 2 formes simples

𝑧

𝑦𝑏

ℎ

𝑟

𝑑

𝑦5 =
∑GEH
I 𝑦G𝐴G
∑GEH
I 𝐴G



Exemple 0
42

Solution: calcul des centroïdes de chaque élément et de y0

𝑧

𝑦𝑏

ℎ

𝑟

𝑦560 = 𝑑

𝐴4-5 = 𝜋𝑟1

𝑦& =
𝑦678 𝐴678 − 𝑦4-5 𝐴4-5

𝐴9:9
=

ℎ
2 𝑏ℎ − 𝑑𝜋𝑟1

𝑏ℎ − 𝜋𝑟1

• Surfaces 

• Centroïdes
(à partir de 𝑦 = 0)

𝐴678 = 𝑏ℎ Surface du rectangle

𝐴9:9 = 𝐴678 − 𝐴4-5 = 𝑏ℎ − 𝜋𝑟1

Surface du cercle

𝑦678 =
ℎ
2 Centroïde du rectangle

𝑦4-5 = 𝑑 Centroïde du cercle (pas 𝑟/2 !)

𝑦5 =
∑GEHI 𝑦G𝐴G
∑GEHI 𝐴G

Origine

𝑦075 = ℎ/2𝑦é*é+,-. =
∫𝑦 𝑑𝐴
∫𝑑𝐴

→ 𝒄𝒆𝒏𝒕𝒓𝒐ï𝒅𝒆

𝑦& =
𝑏ℎ1
2 − 𝜋𝑑𝑟1

𝑏ℎ − 𝜋𝑟1



Exemple 0
43

Solution: calcul du moment d’inertie complet

𝑧

𝑦𝑏

ℎ 𝑟

𝐼678 =
1
12
𝑏ℎ3

Moments d’inertie 

Moment d’inertie du rectangle par 
l’axe passant par son centroïde 𝑦:;<

𝐼7) = 𝐼RLS − 𝐼TGU + 𝐴RLS 𝑦RLS − 𝑦5 D − 𝐴TGU 𝑦TGU − 𝑦5 D

𝐼4-5 =
1
4
𝜋𝑟2 Moment d’inertie du cercle par 

l’axe passant par son centroïde 𝑦𝑐𝑖𝑟

𝐼#,'% =H
=>?

@

𝐼#,'1 +H
=>?

@

𝐴= 𝑦= − 𝑦+ 5

𝑦& =
ℎ
2 𝑏ℎ − 𝑑𝜋𝑟1

𝑏ℎ − 𝜋𝑟1

𝑦560 = 𝑑

𝑦075 = ℎ/2

(puis algèbre)
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Finalement: calcul de c et de S

𝑧

𝑦𝑏

ℎ

𝑟

𝑑

𝑐 = ℎ − 𝑦5

𝑦&

𝑐

• Distance maximale de l'axe neutre

𝑠 =
𝐼7)
𝑐
=

𝐼'%
ℎ − 𝑦+

• et enfin, le module de section élastique



Poutre encastrée. 2 poutres qui ont la même masse par longueur, mais pas la même section

Trouvez celle qui à le « S » le plus grand (c-à-d les contraintes les plus faibles)

Exemple 1
Deux poutres de section différentes sous une charge uniforme (propre poids)

45

2𝑎 = 2	mm

𝑏 = 3	mm𝑏 = 3	mm

𝑎 = 1	mm

𝑏

𝑎

les 2 poutre ont la même section (6 mm2)

𝜎%,+,% 𝑥 =
𝑀' 𝑥
𝑆



Exemple 1

n Etape 1 - Nous calculons le moment de flexion 𝑀𝑧(𝑥), puis sa valeur maximale. 
Poutre de section A, densité r

46

Poutre avec force distribuée uniforme.

𝑉 𝑥 = 𝜌𝐴𝑔 𝐿 − 𝑥

𝑞 𝑥 = 𝜌𝐴𝑔

𝑀 𝑥 = −𝜌𝐴𝑔
𝐿 − 𝑥 1

2
𝑀 J,% = 𝑀 𝑥 = 0 = 𝜌𝐴𝑔

𝐿1

2

𝑀=

𝑅=



Exemple 1

n Etape 2 – trouver a) la position 𝑦0de l’axe neutre, et b) la distance max c entre 
l’axe neutre et le bord de la poutre.

47

Poutre avec force distribuée uniforme.

2𝑎 = 2	mm

𝑏 = 3	mm𝑏 = 3	mm

𝑎 = 1	mm

𝑦$ =
∫ 𝑦 𝑑𝐴
∫ 𝑑𝐴

𝑦$ =
𝑏
2𝑦$ =

𝑎 ∫$
6 𝑦 𝑑𝑦 + 𝑏 ∫6

6>( 𝑦 𝑑𝑦
2𝑎𝑏

=
3𝑏 + 𝑎
4

𝐴 = 2𝑎𝑏 𝐴 = 2𝑎𝑏

𝑦 𝑦

𝑐 = 𝑦$ =
3𝑏 + 𝑎
4

= 2.5	mm 𝑐 = 𝑦$ =
𝑏
2
= 1.5	mm

𝑏

(voir prochain 
slide pour 
l’intégrale)

𝑎
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Exemple 1

n Etape 3v1 - Nous calculons le moment d'inertie, selon z, de l’assemblage, 
utilisant Steiner

49

Poutre sous charge uniforme

𝑦

𝐼',"! = 𝐼K577.,"! + 𝐼LMN7,"!

= 𝐼K577.,";,! + 𝐴K577. · 𝑦& − 𝑦K,&
1 + 𝐼LMN7,"<,! + 𝐴LMN7 · 𝑦& − 𝑦L,&

1

𝐼",$! 	=
𝑎𝑏?
12 +

𝑏𝑎?
12 + 𝑎𝑏

𝑏 + 𝑎
4

8

+ 𝑎𝑏
𝑏 + 𝑎
4

8

𝐼",$! 	=
𝑎𝑏?
12 +

𝑏𝑎?
12 +

𝑎𝑏 𝑏8 + 2𝑎𝑏 + 𝑎8

8 =

𝐼",$! 	=
5𝑎𝑏? + 5𝑏𝑎? + 6𝑎8𝑏8

24 = 8.5	mm@

𝑦$ 𝑦6,$
𝑦A,$

𝑦& =
3𝑏 + 𝑎
4

𝐼%,7) =F
GEH

I

𝐼%,7/ +F
GEH

I

𝐴G 𝑦G − 𝑦5 D

𝑦=,& =
𝑏
2

𝑦>,& = 𝑏 +
𝑎
2



Exemple 1

n Etape 3v2 - Nous calculons le moment d'inertie (MÉTHODE alternative, par intégrale 
directement plutôt que par Steiner)

50

Poutre sous charge uniforme

𝑏 = 3	mm

𝑎 = 1	mm

𝐼),*$ = e 𝑦 − 𝑦$ 8 𝑑𝐴 =e 𝑦 − 𝑦$ 8 𝑑𝑧𝑑𝑦

𝑦 𝐼',"! = 𝐼K577.,"! + 𝐼LMN7,"! = 𝑎4
&

L
𝑦 − 𝑦& 1 𝑑𝑦 + 𝑏4

L

LO,
𝑦 − 𝑦& 1 𝑑𝑦

= 𝑎 7
𝑦 − 𝑦& 3

3
&

L

+ 𝑏 7
𝑦 − 𝑦& 3

3
L

LO,

𝐼', 𝑦𝑜 =
𝑎
3 𝑏 −

3𝑏 + 𝑎
4

3
+

3𝑏 + 𝑎
4

3
+
𝑏
3 𝑏 + 𝑎 −

3𝑏 + 𝑎
4

3
− 𝑏 −

3𝑏 + 𝑎
4

3

=
1
3
0.53 + 2.53 + 1.53 · 3 − 3 · 0.53 	mm2 = 8.5 mm2



Exemple 1

n Etape 3 - Nous comparons les moments d'inertie, selon z

51

Poutre sous charge uniforme

2𝑎 = 2	mm

𝑏 = 3	mm𝑏 = 3	mm

𝑎 = 1	mm

𝐼),*$ = e 𝑦 − 𝑦$ 8 𝑑𝐴

𝐼),*$ = e 𝑦 −
𝑏
2

8

𝑑𝐴 =	

= 2𝑎 e
$

6
𝑦8 − 𝑏𝑦 +

𝑏8

4
𝑑𝑦 =

=
𝑎𝑏A

6
= 4.5	mm:

𝑦 𝑦

remarquez que Ibarre_en_t est presque 2x Ibarre_rectangulaire 

𝑦$

𝐼%,7)=8.5 mm4



Exemple 1
Poutre sous charge uniforme
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2𝑎 = 2	mm

𝑏 = 3	mm𝑏 = 3	mm

𝑎 = 1	mm

n Etape 4 - Nous calculons le module de section élastique S 

𝑆 =
8.5
2.5

= 3.4	mm? 𝑆 =
4.5
1.5

= 3	mm?

• Il y aura donc des contraintes maximum très semblables pour les deux cas 
pour un même moment imposé, malgré le fait que la barre “en T” soit 2x 
plus rigide.

• Mais la barre en T aura une déflexion environ 2x plus faible

𝑠 =
𝐼7)
𝑐

𝜎%,+,% 𝑥 =
𝑀' 𝑥
𝑆



n Une poutre de section rectangulaire, de longueur L, largeur b et 
épaisseur 2𝑓(𝑥) est chargée comme indiqué par une Force F0.

n Trouvez 𝑓(𝑥) pour avoir la même contrainte maximum tout le long 
de la poutre bleue.

Exemple 2
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Beige: Infiniment Rigide

𝐹5
𝑓 𝑥

𝑓 𝑥

𝑑
𝐿

𝑥



Solution 2

n Moment de flexion: 𝑀 𝑥 = −𝐹$ 𝑑 + 𝐿 − 𝑥

n Contrainte Maximum : 𝜎!,'(! 𝑥 = "! !
#!,#$

𝑐

n Moment d’inertie: 𝐼),*$ 𝑥 = B
B8

2𝑓 𝑥 ?𝑏

n Distance maximale de l'axe neutre: 𝑐 = 𝑓 𝑥

n Contrainte Maximum : 𝜎!,'(! 𝑥 = "! !
#!,#$

𝑐 = ?C$(E>FG!)
86I7(!)

= 𝜎$

n 𝑓 𝑥 = ?C$(E>FG!)
86J$
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𝑦

𝑧 2𝑓(𝑥)

𝑏

𝑥
𝑀(𝑥)

𝐿

−𝐹$𝑑
−𝐹$(𝑑 + 𝐿)


